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Abstract 

Phase refinement using partial structural information 
is an important step in the treatment of crystallo- 
graphic data. An optimization procedure is presented 
that, in contrast to conventional Fourier methods, 
takes into account the spatial dependence of the 
accuracy of the partial information for electron den- 
sity. Annealing studies for a test case show that this 
optimization procedure is tractable for system sizes 
relevant to the treatment of protein diffraction data 
and requires substantially less structural information 
for accurate phase refinement than Fourier methods. 

1. In~oducfion 

The Fourier method has been known since the early 
days of X-ray crystallography (Cochran, 1951) and is 
ubiquitous in techniques such as solvent flattening 
(Wang, 1985; Cura, Krishnaswamy & Podjarny, 
1992) or molecular replacement (Rossmann & Blow, 
1962; Fitzgerald, 1991) used nowadays to phase 
protein diffraction data. In this method, a partial 
knowledge of the electron density is used to estimate 
the phase of the structure factors of the whole struc- 
ture. However, it often occurs in practice that the 
partial knowledge of the electron density is insuffi- 
cient to lead to accurate estimates for the phase of 
the structure factors and the resulting electron- 
density map is difficult or impossible to interpret. 
Probabilistic approaches (Sim, 1959; Srinavasan, 
1966; Bricogne, 1976; Read, 1986) have been sug- 
gested to improve the efficiency of the Fourier 
method in the case of a limited partial knowledge of 
the electron density. 

It has recently been suggested (Szrke, 1993) that 
an efficient use of the partial knowledge of the 
electron density could be achieved in cases where one 
has an estimate of the electron density that is accur- 
ate in a restricted region of the unit cell. In such 
cases, the dependence of the accuracy of the estimate 
on the position within the unit cell can be considered 
as an additional piece of information that may help 
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to improve phase recovery. The Fourier method 
unfortunately does not take this type of information 
into account. This type of information can be 
included by using an optimization procedure (Szrke, 
1993) in which the electron density is simultaneously 
constrained to be consistent both with the knowledge 
of the density in the restricted region and with the 
diffraction data. The idea of using this type of 
information is interesting because the identification 
of a protein domain or of a region of a disordered 
solvent in an imperfect density map often leads to 
accurate knowledge of the electron density in a 
restricted region. 

We propose here an optimization procedure for 
phasing using the knowledge of the electron density 
in a restricted region of the unit cell as a constraint. 
The amplitudes of the structure factors of the elec- 
tron density are fixed to their true values, while the 
phases are used as variational parameters. We define 
the cost function to be optimized as the average, 
restricted to the region o f  known density, of the 
squared difference between the electron density cor- 
responding to the variational phases and the density 
estimate available in the restricted region. This cost 
function is then minimized using simulated annealing 
(Kirkpatrick, Gelatt & Vecchi, 1983). 

We study the performance of this procedure for 
accurate phase refinement on a test case given by the 
model of a known protein containing 149 residues. 
In order to characterize the accuracy of phase 
retrieval, we evaluate the average error of the recov- 
ered phases, as well as their sensitivity to noise in 
data for the density estimate in the restricted region 
and to noise in data for structure-factor amplitudes. 

We find that this procedure requires substantially 
less structural information for accurate phase 
refinement than Fourier methods. For example, 
assuming the electron density to be known with a 
given uncertainty in a restricted domain occupying 
61% of the unit cell and consisting mostly of dis- 
ordered solvent, this procedure allows an estimation 
of the electron density in the rest of the unit cell with 
an error smaller than twice the uncertainty of the 
density estimate in the restricted domain. In contrast, 
using the same partial knowledge for the electron 
density, we find that the Fourier estimates for phases 
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differ from the true values by more than 90 ° on 
average. This optimization procedure is practical: it 
takes ca 2 h on an IBM 6000 computer to phase the 
structure up to 2/~ resolution. 

In addition, studies of the relaxation time for small 
systems suggest that the optimization problem pre- 
sented here is of moderate complexity when data for 
the density estimate in the restricted region and data 
for structure-factor amplitudes are sufficient to lead 
to unambiguous determination of the whole electron 
density. When the latter condition is not satisifed, we 
observe a slowing down in relaxation characteristic 
of spin glass systems (Mackenzie & Young, 1982). 

This procedure treats electron-density data for 
protein structure and disordered solvent on the same 
footing. It can thus make an efficient use of knowl- 
edge for the position of parts of disordered solvent, 
in contrast to Fourier methods which require the 
knowledge of the whole protein envelope. 

,In the case where the amount  of structural 
information is insufficient to lead to accurate phase 
refinement, it frequently occurs that the density map 
obtained by Fourier methods still allows the identi- 
fication of additional parts of the structure, leading 
to the complete determination of the protein struc- 
ture in several steps. The question of the perform- 
ance of the optimization procedure in such a case 
deserves further study. In particular, it would be 
interesting to know whether or not this procedure is 
able to lead to more interpretable density maps than 
Fourier methods in the case of a limited partial 
knowledge of the electron density. 

2. Optimization procedure 

2.1. Cost function 

Let us state the problem for the simple case of an 
orthorhombic crystal. The structure factors Fk and 
the electron density p(r) are related by 

Fk = f darp(r)exp(27ri{[(kxrl)/al] + [(kzrE)/a2] 
U . C .  

+ [(k3r3)/a3]}) (2.1) 

and by 

p(r) = V - l  ~'.Fkexp(--27ri{[(klrl)/al] + [(k2rz)/a2] 
k 

+ [(k3r3)/a3]}), (2.2) 

where the integral in (2.1) is performed over the unit 
cell, V denotes the volume of the unit cell and al, a2 
and a3 denote the unit-cell dimensions. The ampli- 
tudes of structure factors Fk can be inferred from 
diffraction data but their phases are unknown. Let 
us suppose that we are given an estimate peSt(r) of the 
electron density, which is accurate only in a restric- 
ted region _~ of the unit cell. We wish to reconstruct 
the electron density in the whole unit cell by simul- 

taneously requiring p(r) to be consistent with diffrac- 
tion data for IFkl and to match peSt(r) in a restricted 
region 2 .  

Let us first suppose that p(r) and peSt(r) are band- 
width limited, i.e. their structure factors Fk and Fk est 
vanish for ak/2 < R, where R is the resolution limit 
and where 

Ak = [(k2/~) + ( ~ / d )  + ( ~ / d ) ]  -1,2 (2.3) 

is the wavelength associated with wave vector k. 
The knowledge of the amplitude of structure fac- 

tors can be incorporated by expressing the electron 
density as 

p~k(r) = V -1 Z" AkeXp(i~ok)exp(-- 27ri {[(klrl)/al] 
- -  k 

+ [(k2r2)/a2] + [(k3r3)/a3]}), (2.4) 

where Ak and ~0k, respectivelY, denote the amplitude 
and phase angle of structure factor Fk and where the 
primed sum is performed over index k satisfying 
Ak/2>_R. Subscript q~k on the left-hand side 
of (2.4) indicates that the density is parametrized 
by the finite set of  phase angles ~0k satisfying Ak/2 
_> R. We wish to fit the phase parameters q~k so 
that p~k(r) matches peSt(r) in domain 2 .  For this, we 
minirr~e the cost function E(q~k___) given by 

N a - 1  

E(~ok)- (N1NEN3) -1 ~ X ,p~, (r , ) -  peSt(r,) 2, 
na~O 

(2.5) 

where N1, Nz and N3 are positive integers satisfying 
a,~/N~ < R for a = 1, 2 and 3; the sum n~ = 0, ..., 
N , , -  1 is performed over all three components of n 
= (nl, n2, n3); rn defines a grid spanning the unit cell 
in the manner 

( nl n2 n3 ) 
N2 a2, N3 a3 r , =  ~-~1 al, - -  - -  ; (2.6) 

2', is the characteristic function of the domain 2 on 
lattice r, defined by 

1 i f r ,  E 2 
(2.7) 

X, = 0 otherwise. 

The cost function E(q~k) can be explicitly written as a 
function of phases q~k as 

E(~pk) = Z',~q_kAkAqexp[i(q~k -- q~q)] 
k,q 

I_ k,q 

, A 1Test l T e s t ,  (2.8) + E ,¥q-kJtk  Jtq , 
k,q 

where J'k is the discrete Fourier transform of X, 
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given by 
V-2 N..-I 

x,,exp(2zri{[(k~n.)/Nl] 
N,  N2N3 ,~ = o 

+ [(kznz)/N2] + [(k3n3)/N3]}). (2.9) 

We now discuss the relation between the Fourier 
method and the procedure which consists of mini- 
mizing the cost function given by (2.5). The phases 
q~k obtained by conventional Fourier methods on the 
basis of the estimated density peSt(r) can be expressed 
as the phase configuration which minimizes the cost 
function E(~Ok) when the domain _~ occupies the 
whole unit cell. Indeed, in this case, (2.8) can be 
rewritten as 

E(q~k) = V -z  Z '  Ak exp (iq~k)- F ?  rE. (2.10) 
k 

This quantity is minimal when ~o~ is equal to the 
phase angle of F~ st. The phases obtained by Fourier 
methods thus depend on the value of the estimate 
peSt(r) at every position r in the unit cell, whether or 
not  peSt(r) is accurate at position r. In the case where 
we have an estimate of the electron density that is 
accurate only in a restricted region .~,  the definition 
of peSt(r) outside .~ becomes arbitrary, leading to 
inaccurate phases. In such cases, it is more correct to 
evaluate phases by minimizing the cost function of 
the type in (2.5), which only takes into account the 
information contained in the estimate peSt(r), restric- 
ted to domain .~. 

We now consider the case in which the densities 
p(r) and peSt(r) are not limited in resolution. In this 
case, we first need to low-pass filter p(r) and peSt(r) so 
as to reduce the number of phase variables corre- 
sponding to nonzero structure factors to a finite 
number. This can be done by using the substitution 

exp [ - (zr W/Ak)E]Ak 
Ak t 0 

and 

F~St ....~ { ; xp [ - ( Tr W/ Ak)2]F egst 

if Ak/2 --> R 
otherwise (2.11) 

if Ak/2 --> R 
(2.12) 

otherwise, 

where W is a parameter. In the limit W >> R, this 
substitution corresponds to a convolution in real 
space using a Gaussian function of the form 
exp[-(r/W)2]. In the limit W << R, this substitu- 
tion corresponds to a convolution using a long-range 
function of the type [2R sin (r/2R) - r cos (r/2R)]/r 3. 
In the latter limit, the value of the convoluted density 
peSt(r) at the postion r ~ .~ may contain significant 
contributions from the unconvoluted density peSt(r') 
at distant positions r' out of domain .~,  where 
peSt(r') does not describe accurately the actual elec- 
tron density. In such circumstances, peSt(r) may not 

describe accurately p(r) in domain .~ after convol- 
ution. It is, therefore, appropriate to use a value of 
W such that W_> R, which eliminates the long-range 
tail of the convolution kernel and thus preserves the 
quality of the estimate peSt(r) in domain 2 at a 
distance W from its boundary. 

Taking into account the crystallographic symme- 
try and the reality of the electron density leads to 
linear relations among phases ~0k. The cost function 
E can thus be expressed as a function of a restricted 
set of independent phase variables that we denote 
{~1, ..., ~ } .  Each independent phase variable ~j cor- 
responds to a unique reflection. These independent 
phase variables can be further classified into non- 
centrosymmetric phases, which can taken continuous 
values between 0 and 360 °, and centrosymmetric 
phases, whose set of allowed values consists either of 
the doublet (0,180 °) or the doublet (90, 270°). 

2.2. Simulated annealing ~ 

Our implementation of simulated annealing is 
directly inspired by the work by Kirkpatrick, Gelatt 
& Vecchi (1983). The cost function E(~I, ..., ~M) 
defines the 'energy' of the system at the position 
(~, .... ,~M) in the configuration space of the 
independent phases. The standard Metropolis 
method is used to generate a stochastic walk in the 
configuration space in a thermal equilibrium at a 
'temperature' T. At each step, a phase ~j is randomly 
chosen and given a random change A-ffj. The energy 
difference AE between the new and the previous 
configuration is calculated. The new configuration is 
accepted with probability P = m i n [ e x p ( - A E / T ) ,  1]. 
In case of acceptance, the new configuration is used 
as the starting point of the next step. Otherwise, the 
previous configuration is used again as a starting 
point 

This stochastic process enables the sampling of the 
configuration space according to the Boltzmann 
probability distribution given by 

J ( ~ , ,  ..., ~M)= exp{-[E(~i ,  ..., ~M)]/T}. (2.13) 

Both cost function E and 'temperature' T are in units 
of A-6 and have the physical dimension of a density 
squared. 

For the annealing schedule, we choose an initial 
temperature To twice as large as the largest value of 
the energy obtained from a few configurations taken 
at random. These configurations are obtained by 
assigning to each phase ~j a random value consistent 
with its type (centrosymmetric or noncentrosymme- 
tric). We then cool exponentially using 7", = ( 1 -  
e)"To, with n = 1, ..., Ncycle. The initial configuration 
is taken at random and a number Nstep of Metropolis 
iterations is performed at each temperature 7,. For 
relatively small e and for values of Nstep and Ncycl e 
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large enough, the stochastic process converges to the 
global minimum of the cost function. 

For the sampling of configurations, we use A~j = 
180 ° in the case of centrosymmetric phases and 
choose/t~j at random in an interval [- /3j ,  flj] in the 
case of noncentrosymmetric phases. The value flj is 
initially set equal to 180 ° . In order to optimize the 
search in configuration space (Vanderbilt & Louie, 
1983), flj is then progressively reduced during the 
annealing process so that the acceptance rate for 
Metropolis steps affecting the value of the phase ~j is 
nearly equal to 1/2. In order to do this, we recalcu- 
late the acceptance rate for moves of phase ~j after 
every 100M Metropolis iterations, where M is the 
number of independent phase variables. If this 
acceptance rate is smaller than 0.4, the flj value is 
reduced by a factor equal to twice the value of the 
acceptance rate. 

3. N u m e r i c a l  test  

In order to test our optimization procedure, we use 
the electron density of the model of the protein 
Staphylococcus nuclease, which crystallizes in P41 
symmetry with unit-cell dimensions al = 48.18, a2 = 
48.18 and a3 = 63.51/~. The density pm°d(r) of this 
model is convoluted using the substitution 

F~od._+~exp[--(TrW/Ak)E]Fk m°d if ,~k/E>--R (3.1) 

t o  otherwise, 

where F ~  °d denotes the structure factors of pm°d(r) 
and where R = W = 2 A. The amplitudes Ak defined 
by (2.4) are then taken to be equal to IFkm°d[ and the 
density estimate peSt(r) is taken to be equal to the 
density pm°d(r ) .  The subdomain _~ of the unit cell 
where pest(r) is assumed to accurately describe the 
electron density is defined on the grid r,, given by 
(2.6) as 

,¥n "- 

f l  ifpeSt(r,,)--<Pthresho,d, Vn' such that r , , - r ,  _<d 

t0 otherwise, (3.2) 

where Pthreshold and d are parameters. 
The cost function E is then defined using (2.5) with 

N, = N2 = N3 = 32. Note that this cost function only 
incorporates the knowledge of the structure-factor 
a m p l i t u d e s  A k and the knowledge of the electron 
density restricted to domain D. The minimization of 
this cost function with respect to phase angles ~0 k is 
expected to recover the electron density in the whole 
unit cell. 

Our test is performed for domains 2 of various 
sizes defined by (3.2), with d =  2/~ and (a) Pthreshold 

= 0.25, (b) Pt~eshold = 0.3, (C) P t l a r e s h o l d  - "  0.35, (d) 

Table 1. Average phase difference (o) between the 
structure factors Fk m°d of the density pm°d(r) and the 
structure factors of  pm°d(r) restricted to domain 2 ,  
calculated in various resolution ranges (~) for the 

cases (a), (b), (c), (d) and (e) considered in the text 

The upper and lower numbers for each case correspond to centro- 
symmetric and noncentrosymmetric phases. The average is calcu- 
lated using a weight given by the amplitude Ak defined by (2.4). 

Resolution 
range ,~k/2 oo--8 8--4 4--2.66 2.66-2 

Number 7 21 35 51 
of phases 13 120 338 667 

(a) 138.0 124.6 99.2 92.2 
148.7 133.5 108.3 93.8 

(b) 138.0 134.9 96.2 89.9 
132.3 129.7 109.7 91.0 

(c) 23.25 163.7 I 19.4 96.8 
107.7 125.5 I 11.0 97.2 

(d) 23.3 147.3 120.3 121.3 
52.0 112.5 117.6 96.8 

(e) 23.3 105.3 l 11.4 110.1 
50.5 102.5 117.9 98.6 

P t h r e s h o l d = 0 . 3 8  a n d  (e) Pthreshold- -0 .41  lk  -3 .  T h e  
domains thus defined respectively occupy a fraction 
(a) v=0.447, (b) v=0.502, (c) v=0.565, (d) v= 
0.613 and (e) v = 0.665 of the volume of the unit cell, 
where v is defined by 

N ~ - I  

v = (N, NEN3)-' Y. X,. (3.3) 
na=O 

In all five cases, the domain 2 of 'known density' 
contains mostly interprotein void and the partial 
knowledge of the density restricted to this domain 
fails to provide reliable phase estimates by conven- 
tional Fourier methods. This can be seen in Table 1, 
which lists the average phase difference between 
F~ n°d and the structure factors of the density pm°d(r) 
restricted to domain _~, which is obtained from the 
discrete Fourier transform of X,, x pm°O(rn). This 
phase difference is larger than 90 °, except for a few 
phases at low resolution. 

In order to evaluate the reconstruction of the 
electron density in the whole unit cell, we calculate 
the quantities 

trin(T) = { (vN, N2N3)- ' 

% 
N,, - 1 /1 /2  

x Y= x,(Ip+k(r,) - pm°d(rn)  2>T/ (3.4) 
h a = 0  

and 

trout(T) = {[(1 - v )NIN2N3]  -1 

t ''2 (1 - X.)<lp~r.)-  pm°d(r.)[E>T , 

. o = 0  - -  3 .5)  
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where ( ) r  denotes the average calculated during the 
Metropolis iteration at a given temperature T. The 
quantities trin(T) and trout(T) represent average dis- 
crepancies between the reconstructed density p~,(r) 
and the correct density pm°d(r), respectively ev-fflu- 
ated inside and outside domain 2 .  The quantity 
trin(T) corresponds to the square root of the average 
value of the cost function E, calculated during the 
Metropolis interation and divided by v. The value of 
tro,t(T) at a given temperature T can be regarded as 
the average error obtained in the reconstruction of 
the density outside domain _~ when the uncertainty 
in the density estimate defined in 2 is of order 
trin(T). The simulated annealing algorithm is applied 
to cases (a)-(e) using parameters To = 3000v, e =  
0.01, Ncycl e = 3000 and Nstep = 900. The quantities 
trin(T) and tro,t (T) are calculated every 40 cooling 
steps. Our results for t r in(D and trout(T) are shown in 
Fig. 1. Each dot corresponds to a fixed value of 
temperature. 

Fig. 1 can be discussed in terms of the average 
errors z~. and Ao, t in atom positions inside and 
outside domain _~, which correspond to the average 
errors trin(T) and tro,t(T) in electron density. For a 
collection of C atoms with mean electron density ne 
= 0.43 A-3,  the average density error tr is given as a 
function of the average error A in atom positions by 

tr = Zl(61/2nel/2)/(23/4~3/4I¥ 5/2) (3.6) 

for errors A small compared to the Gaussian width 
W defined by (3.1). In cases (c), (d) and (e), we see in 
Fig. 1 that the error tro,t(T) in the density recon- 
structed outside domain .~ is always smaller than 
twice the uncertainty tri,(T) in the density estimate 
defined in _~, suggesting that the position of atoms 
outside domain _~ could be obtained with an error 

Table 2. Average difference (o) between the phases of  
structure factors Fk m°d and the annealed phases 
obtained at temperature T such that the quantity 

O-in(T ) defined by (3.4) is equal to 0.01 A -3 

The upper and lower numbers for each case correspond to centro- 
symmetric and noncentrosymmetric phases. The average is calcu- 
lated using a weight given by the amplitude Ak defined by (2.4) 

Ak/2 0o--8 8-4 4-2.66 2.66-2 

(a) 0.00 0.00 15.47 51.71 
1.37 6.51 30.38 56.89 

(b) 0.00 0.00 7.41 28.25 
1.01 5.36 23.15 44.50 

(c) 0.00 0.00 6.49 19.61 
0.90 2.83 13.72 30.73 

(d) 0.00 0.00 1.40 18.79 
0.82 2.64 12.20 26.74 

(e) 0.00 0.00 0.45 24.08 
0.78 2.33 9.51 23.59 

Aout smaller than twice the uncertainty Ain in the 
position of atoms in domain _~. 

In cases (a) and (b), the annealing process reaches 
a stationary behavior characterized by a finite value 
of trin(T) at low temperature, suggesting that the 
system cannot reach thermal equilibrium due to fast 
cooling and is trapped into a local minimum. 

Let us now consider the phase recovery. Table 2 
lists the average differences between true and recov- 
ered phases when trin = 0.01 A -3, which, following 
(3.6), corresponds to an average error Ain = 0.15 A in 
the position of atoms in domain _~. In cases (at) and 
(e), the phases are recovered to ca 25 °. For all cases, 
we observe that the corresponding errors in structure 
factors Fk are roughly independent of the wavlength 
Ak for noncentrosymmetric reflections. 

We now consider the sensitivity of the phase 
recovery to noise in the amplitudes Ak of structure 

o'ou xl0 3 

I I I I I (a) 
80.00 - 

) 

I I t I I 
0.00 10.00 20.00 30.00 40.00 

trinX I0 3 

Fig. 1. Quantities tri,(T) and ~ro,~(T) defined by (3.4) and (3.5) and 
evaluated for cases (a)-(e) during the annealing procedure 
described in the text. The dots correspond to values of tempera- 
ture with fixed ratio 7',+,/7", = 0.669. 
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Fig. 2. Quantities tri.(T) and ~ro.t(T) evaluated for cases (a)-(e) 
during the annealing procedure in the presence of 10% noise in 
the data for the amplitudes Ak defined by (2.4). The dots 
correspond to values of temperature with fixed ratio T,,+,/7", = 
0.669. 
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factors. Fig. 2 shows results for annealing processes 
performed for the same test case as before, but using 
amplitudes given by Ak = u X F~°d[, where u is a 
random variable of mean 1 and variance 0.1. At low 
temperature, the annealing process reaches a station- 
ary behavior characterized by a large value of o-i.. 
This is because the values assigned to amplitudes Ak 
are incompatible with the density estimate peSt(r). 
Again, in cases (e), (d) and (e), the error o-o,t(T) in 
the density reconstructed outside domain 2 is 
always smaller or equal to twice the uncertainty 
o-i,(T) in the density estimate defined in .~. Finally, 
we note that the effect of noise in amplitude Ak on 
phase recovery is stronger in cases corresponding to 
a domain _~ of small size, as indicated by the 
important enhancement of O'out(T) for cases (a) and 
(b) in the presence of such noise. 

We conclude from these simulations that the 
optimization procedure is practical for the treatment 
of protein diffraction data at relatively high resolu- 
tion and can successfully handle cases in which the 
partial structural information is insufficient for the 
application of Fourier methods. 

4. Spin glass analogy 

We now address the questions of the nature and 
difficulty of the optimization problem presented 
here. Equation (2.8) for the cost function E can be 
regarded as the interaction energy of a system of 
rotators (or spins) parametrized by angles ~0k. The 
first term describes a coupling between rotators, the 
second term describes the interaction of rotators with 
an external field and the third term is a constant. 
This system bears some similarity to the spin glass 
problem with long-range interactions, which has 
been extensively studied (Kirkpatrick & Sherington, 
1978). 

In the above spin glass system, every spin is 
coupled to all others. For each couple of spins, this 
interaction is randomly chosen to be either ferromag- 
netic (favoring spin alignment) or antiferromagnetic 
(favoring spin anti-alignment). This problem is 
characterized by the existence of numerous energy 
minima which are similar in energy and which are 
distant from each other and/or separated by high- 
energy barriers in configuration space (Fu & 
Anderson, 1986). At low temperature, the relaxation 
of the system to thermal equilibrium is, therefore, 
significantly slowed down, i.e. the characteristic time, 
called relaxation time, needed to visit all energy 
minima according to Boltzmann's probability distri- 
bution is significantly increased (Kirkpatrick & Sher- 
ington, 1978). In the context of optimization, this 
slowing down of relaxation requires the use of a very 
slow annealing schedule, leading to an important 
increase of computational work. The relaxation time, 

and hence the computational work, grows exponen- 
tially with the number of spins in the system. Thus, 
the spin glass problem is an NP-complete optimi- 
zation problem (Barahona, 1982). 

It is interesting to compare the optimization prob- 
lem arising in phasing using spatial constraints to a 
spin glass problem and to ask in particular if the 
former problem exhibits the slowing down in 
relaxation characteristic of the spin glass problem. 
Clearly, the difficulty of the present optimization 
problem depends on the amount of information 
available in terms of the size of a region of known 
density. For example, in the extreme case where the 
density estimate peSt(r) is assumed to be accurate in 
the whole unit cell, the cost function E only possesses 
one minimum and the phase configuration corre- 
sponding to this minimum is simply given by conven- 
tional Fourier methods. We also note that the 
optimization procedure described in the previous 
section for test cases (c), (d) and (e) is able to retrieve 
1252 independent phases with relatively little compu- 
tational work, suggesting that the present optimi- 
zation problem is simpler than a spin glass problem 
when the region 2 of known density occupies a 
large enough volume in the unit cell. On the other 
hand, the stationary behavior of o-in observed at low 
temperature in cases (a) and (b) suggests that the 
stochastic process could not reach thermal equilib- 
rium due to an increase in relaxation time for cases 
corresponding to a domain 2 of small size. 

In order to investigate the question of slowing 
down in relaxation, we study the relaxation time and 
the sensitivity of phase recovery to noise in the 
density estimate in the case of a small test problem 
for regions 2 of various sizes. In this problem, we 
use the density pm°d(r) of the model of Staphylo- 
coccus nuclease convoluted using the substitution 

F~aod...~ F~  °d if k,, <4,  a = 1, 2, 3 
(4.1) 

0 otherwise. 

Again, the amplitudes Ak are taken to be equal to 
F~  °d and the density estimate peSt(r) is taken to be 
equal to the density pm°d(r). The grid r, is given by 
(2.6) with N1 = N2 = N3 = 8. The subdomain _~ of 
the unit cell is defined by (3.2) with d = 3 A and (a') 
Pthreshold = 0 . 0 8 ,  (b') Pthreshold = 0 . 0 8 5 ,  (C')  Pthreshold = 

0.09, (d') Pthreshold=0.14, (e') Pthreshold=0.17, (f') 
Pthreshold "- 0 . 2  and (g') Pthreshold "-- 0.22 A -3. The 
domains thus defined respectively occupy a fraction 
(a') v -  0.32, (b') v = 0.336, (c') v = 0.367, (d') v = 
0.406, (e') v - 0.445, (f ')  v = 0.516 and (g') v = 0.578 
of the volume of the unit cell. The cost function 
E(~I, ..., ~M) is then defined by (2.5). This cost 
function depends on M = 48 independent phases. In 
the spin glass case, the system with 48 spins is large 
enough tO lead to generic spin glass behavior 
(Mackenzie & Young, 1982). 
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The sensitivity s is defined as 

s =  ([v/(1 - v)]{[Tr(B-~C)/M']  - 1}) v2, (4.2) 

where M' is the number of noncentrosymmetric 
phases in the problem, Tr denotes the trace operator 
and where B in an M' x M' matrix is given by 

Bo = [02E/(O_~O~)] ( ~ o d ,  ..., -~od), (4.3) 

where the partial derivatives are taken with respect 
to noncentrosymmetric phases ~i and ~: only and 
where ~ o d ,  -.., ~tod denote the phases of F~  °d. The 
matrix C is defined by (4.3) by substituting for E the 
cost function defined by taking domain _~ to occupy 
the whole unit cell. 

The sensitivity s corresponds to the ratio 
O-out(T)/o'in(T ) of quantities O-in(T ) and Orout(T ) 
defined by (3.4) and (3.5) evaluated in the limit T - , 0  
at thermal equilibrium, i.e. for a large number of 
Metropolis iterations. This can be verified by 
expressing this ratio in terms of the Boltzmann prob- 
ability distribution given by (2.13) and by expanding 
the cost function E up to second order in the phase 
variables ~i around its minimum. A large value of 
sensitivity s indicates that density p(r) can still fluc- 
tuate for r outside region _~, even when p(r) is 
simultaneously constrained to match peSt(r) within 
region .~ and to be consistent with structure-factor 
amplitudes Ak, i.e. the electron density p(r) is 
undefined due to lack of information. 

Our results for s are shown in Fig. 3 as a function 
of size v of the region 2 .  The divergence of s for 
small values of v reflects the failure of phase recovery 
due to the lack of information resulting from the 
small size of region _~ of known density. 

In order to estimate the relaxation time, we evalu- 
ate the average distance K(t) between configurations 
obtained in the stochastic process at 'times' to and 
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Fig. 3. Sensitivity s defined by (4.2) for various sizes v of  domain 
_~ corresponding to cases ( a ' ) - ( f ' )  described in the text. 

to + t, where the 'time' is defined as the number of 
Metropolis iterations divided by the number M of 
phase variables. K(t) is evaluated at thermal equilib- 
rium for a given temperature. The distance between 
two configurations of the system of phases is defined 
as the average squared difference between the elec- 
tron densities corresponding to each configuration. 
For a large 'time' interval t, the average distance K(t) 
tends to an asymptotic value denoted by Ko. The 
relaxation time z is estimated by fitting this average 
distance as 

K(t )=Ko[1 - exp ( -  t/z)]. (4.4) 

In order to detect a slowing down in relaxation 
characteristic of spin glass systems, we evaluate the 
relaxation time ~- at low temperature T correspond- 
ing to density fluctations of size tri, = 0.01 A -3 in 
domain 2 .  A large number of Metropolis iterations 
are performed at temperature T prior to the evalu- 
ation of the average distance K(t), in order to allow 
the energy to relax first. 

Our results for relaxation time ~" are shown in Fig. 
4 as a function of the size v of the region 2 .  The 
divergence of r for small values of v reflects the fact 
that the minimization of cost function E becomes 
increasingly difficult as the domain 2 of known 
density is reduced. This can be understood as fol- 
lows. In the case of a large domain .~,  the cost 
function E defined by (2.5) contains a large amount 
of information which strongly restricts the number of 
phase configurations with a low value of E. Thus, no 
spurious minimum of E can compete with the mini- 
mum corresponding to the correct phases ~ o d ,  ..., 
~ t  °d. As the temperature is reduced, the fluctuations 
of phase variables decrease progressively. The corre- 
sponding optimization problem is easy because it can 
be separated into two independent problems, one 
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Fig. 4. Relaxation time ~- defined by (4.4) for various sizes v of  
domain 2 corresponding to cases ( a ' ) - ( f ' )  described in the 
text. The uncertainty on the estimated values of  ~" is smaller 
than 3%. 



P. BI~RAN AND A. SZOKE 27 

consisting of the evaluation of the gross features of 
the electron density, which is solved at high tempera- 
ture, and the other consisting of the evaluation of the 
fine details of the electron density, which is solved at 
low temperature (Kirkpatrick, Gelatt & Vecchi, 
1983). In the case of a small domain 2 ,  spurious 
minima of E develop and compete with the minimum 
corresponding to the correct phases. As the tempera- 
ture is reduced, the stochastic walk is confined to a 
particular minimum. This corresponds to the simul- 
taneous freezing of a number of phase variables. In 
the vicinity of this transition, very slow cooling is 
required in order to allow the system to freeze in the 
configuration with lowest 'energy' E. 

Note the similarity of the dependence of quantities 
~" and s on size v of domain 2 .  This suggests that the 
slowing down in relaxation characteristic of spin 
glass systems only occurs when phase recovery fails 
owing to the lack of information resulting from the 
small size of region _~ of known density. This also 
suggests that the optimization problem arising in 
phasing using spatial constraints is simpler than a 
spin glass problem when enough information is 
available for the unambiguous determination of the 
electron density. 

We thank R. B. Laughlin, S. Subbiah, H. Szrke 
and J. Somoza for helpful discussions. 
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Abstract 

Ewald's method of accelerated convergence [Ewald 
(1921). Ann. Phys. (Leipzig), 64, 253-287] is gen- 
eralized to calculate the electrostatic potential of a 
crystal in which the atoms have overlapping spheri- 
cal densities. The algorithm is applied to the cubic 
NaF crystal. The potentials at the Na and F nuclei 
are calculated for the free-ion model and for the 
results from a x refinement of the experimental data 
of Howard & Jones [Acta Cryst. (1977), A33, 
776-783]. The K refinement indicates an incomplete 
charge transfer but gives an electrostatic energy close 
to that of the point-charge model with full charge 
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transfer and a lattice energy that is in good 
agreement with the experimental value. 

Introduction 
Although calculations of the lattice energy of ionic 
crystals often produce good agreement with experi- 
mental values as determined in a Born-Haber cycle, 
they are generally based on a point-charge model, 
which does not properly describe the charge distribu- 
tion in the crystals. In this article, we describe 
methods to evaluate the energy for a crystal consist- 
ing of spherical ions and apply the results to NaF, 
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